

qcf: quartet concordance factor estimation

[image: Build Status] [https://travis-ci.org/pblischak/QCF] [image: Documentation] [http://qcf.readthedocs.io] [image: QCF Version] [https://github.com/pblischak/QCF/releases/tag/0.2.0a]

qcf is a C++ program for estimating quartet concordance factors
from multilocus sequence data. It uses the LogDet transformation
to calculate the frequency of gene tree quartets matching
the three possible unrooted species tree topologies for a set of four
taxa. qcf can handle multiple haplotypes per taxon/population, and outputs a
CSV file that can be used to infer a species tree using scripts from the
TICR pipeline [https://github.com/nstenz/TICR]
and is compatible with the SNaQ method for phylogenetic network
inference implemented in the Julia package
PhyloNetworks [http://crsl4.github.io/PhyloNetworks.jl/latest/].

Documentation

	Getting Started

	Tutorial

Getting Started

Installation

qcf can be installed by cloning the code from GitHub using the following steps:

git clone https://github.com/pblischak/QCF.git # 1. Clone the repo from GitHub
cd QCF/ # 2. cd into the QCF/ folder
make # 3. compile the qcf executable
make test # 4. test that the executable works
sudo make install # 5. copy executable to /usr/local/bin

The sudo make install step will also cp all the files in the scripts/ folder
to /usr/local/bin.
Stable versions of QCF are also available on the Releases [https://github.com/pblischak/QCF/releases] page.

Input Files

Phylip Files

Sequence data for each gene should be in its own file in Phylip format.
The setup should be the same as if you were planning to run RAxML
on each gene individually.

Example:

 16 500
sp1_1 AGTACAAGGTAGACAGTAGACG...
sp1_2 AGTACAAGGTAGACAGTAGACG...
sp2_1 AGTACAAGGTAGACAGTAGACG...
.
.
.
spN_3 AGTACAAGGTAGACAGTAGACG...

Gene List File

The gene list file is a simple text file that has the name of each Phylip
file that is to be included in an analysis on its own line.

Example:

gene1.phy
gene2.phy
gene3.phy
.
.
.
geneL.phy

If this file and the gene sequence files are not in the same directory, then
you can add the relevant path information to the Phylip files here so that
the program can still find them (e.g., path/to/geneL.phy).

Map File

The mapping file maps haplotypes to sampled taxa.
The easiest way to do this is to sequentially number the haplotypes
for each gene (e.g., SpeciesName_1, SpeciesName_2, etc.).
Genes are treated as independent, so they can reuse the same
haplotype names. Also, not all genes need to have all haplotypes.
For each taxon, start with its name, followed by a colon (:), then the
names of the haplotypes that are present in the Phylip files containing the
sequence data, each separated by a comma (,). There should be no spaces.
This format is the same as the one used by
ASTRAL [https://github.com/smirarab/ASTRAL/blob/master/astral-tutorial.md#running-on-a-multi-individual-datasets].

Example:

sp1:sp1_1,sp1_2,sp1_3
sp2:sp2_1,sp2_2
.
.
.
spN:spN_1,spN_2,spN_3,spN_4

Output Files

qcf by default will produce an output file that contains the estimated quartet
concordance factors in a file called out-qcf.CFs.csv. If you also print the raw
quartet scores, then the program will write another file called out-raw.csv. This
file contains all of the raw scores for all haplotypes for each species quartet
(it is not intended to be human readable). The out-raw.csv file is what can be
passed to the qcf_boot.py Python script to conduct bootstrap resampling for confidence
interval estimation.

Tutorial

Below we will go through an example analysis using some simulated data that is
available in the example/ folder in the
QCF GitHub repository [https://github.com/pblischak/QCF].

Step 0: Get qcf

If you don’t have the repo, clone it and install qcf. If you already have the QCF
repository then go ahead and skip to the next step.

git clone https://github.com/pblischak/QCF.git
cd QCF
make
make test
sudo make install

Step 1: Look at Example Files

Now we’ll run the example analyses. First, we’ll change into the example/ folder in the QCF repo.

cd into the example folder (wherever it is on your computer)
cd /path/to/QCF/example

check out what files are there
ls

You should see the Phylip files containing the sequence data, the genes.txt file containing
a list of all of the genes, and the map.txt file.

Aside: Making the gene list file can be done in the folder with all of the
Phylip files using the following code within a terminal
ls -1 *.phy > genes.txt

Step 2: Run qcf

The most basic analysis that we can do with qcf is to just
calculate QCF scores with the genes.txt and map.txt files.

qcf -i genes.txt -m map.txt --prefix example1

If you want to incorporate uncertainty into the estimation of the QCF scores,
there is an option to perform bootstrap resampling of sites within each gene.
This will make the analysis slower depending on how many bootstrap replicates
you perform.

add -b <#> for bootstrapping
qcf -i genes.txt -m map.txt -b 500 --prefix example2

To calculate confidence intervals for the QCF scores, we’ll add the --printRaw
flag when calling qcf. This will generate an extra output file that can be used
with the qcf_boot.py script to

add the --printRaw flag
qcf -i genes.txt -m map.txt -b 500 --prefix example3 --printRaw

Using the raw output from the previous step, we’ll use the Python script
qcf_boot.py to resample gene-level quartets to calculate QCF values
and their 95% confidence intervals.

qcf_boot.py -i example3-raw.csv -b 500 --prefix resampled

This will generate the file resampled-boot.CFs.csv. This file can be used to infer
a species tree with scripts from the TICR pipeline (Stenz et al. 2015), which are packaged
with QCF in the scripts/ folder (should be available if you ran sudo make install).

Note

Citing TICR

If you use these scripts please be sure to cite the TICR pipeline:

Stenz, N. W. M., B. Larget, D. A. Baum, and C. Ane. 2015.
Exploring Tree-Like and Non-Tree-Like Patterns Using Genome Sequences:
An Example Using the Inbreeding Plant Species Arabidopsis thaliana (L.) Heynh.
Systematic Biology 64:809–823.

To use these scripts, you will also need to install QuartetMaxCut, which is available
here [http://research.haifa.ac.il/~ssagi/software/QMCN.tar.gz]. The
TICR README [https://github.com/nstenz/TICR]
has a lot of helpful information for using these scripts as well.

Get a tree topology using QuartetMaxCut
Usage:
perl get-pop-tree.pl <bootstrap QCF file>
perl get-pop-tree.pl resampled-boot.CFs.csv

Estimate branch lengths in coalescent units
Usage:
Rscript --vanilla getTreeBranchLengths.R <bootstrap file prefix> <outgroup>
Rscript --vanilla getTreeBranchLengths.R resampled-boot 6

The resampled-boot.CFs.csv file is also formatted to be analyzed using the SNaQ
species network inference method in the PhyloNetworks package. Documentation for running
SNaQ is available on the PhyloNetworks website [https://crsl4.github.io/PhyloNetworks.jl/stable/].

Analyzing Genes in Parallel

If you have a large number of genes, it is possible to analyze smaller numbers of
genes separately and in parallel to make analyses more computationally efficient.
To do this, instead of listing all genes in one file, create several files listing
different groups of genes, analyze each one on its own (you can use the same map
file for each), and then combine them using the qcf_boot.py script. Because
the results are combined using qcf_boot.py, each analysis will have to be run
with the --printRaw flag.

First we'll analyze gene set 1
qcf -i genes1.txt -m map.txt -b 500 --prefix out1 --printRaw

Now gene set 2
qcf -i genes2.txt -m map.txt -b 500 --prefix out2 --printRaw

Now we’ll calculate QCFs and their confidence intervals across
the independent runs we just completed. The qcf_boot.py script
is written such that it can combine the raw data across any number
of independent runs.

#
qcf_boot.py -i out1-raw.csv out2-raw.csv -b 500 --prefix resampled2

If you have more than 2 input files, you can list them all after the -i
flag:

qcf_boot.py -i out1-raw.csv out2-raw.csv out3-raw.csv <...more files...> \
 -b 500 --prefix resampled3

An easy way to list them all would be to do something like this:

qcf_boot.py -i $(ls *-raw.csv) -b 500 --prefix resampled4

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 qcf: quartet concordance factor estimation

 		
 Getting Started

 		
 Installation

 		
 Input Files

 		
 Phylip Files

 		
 Gene List File

 		
 Map File

 		
 Output Files

 		
 Tutorial

 		
 Step 0: Get qcf

 		
 Step 1: Look at Example Files

 		
 Step 2: Run qcf

 		
 Analyzing Genes in Parallel

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

